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  ABSTRACT  

 
 Let G = (V(G), E(G)) be a graph. The eccentric connectivity 

polynomial of G is defined as EC(G,x) = 

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 where 

the eccentricity )( iG v  for a given vertex vi of V(G), is the 

largest distance from vi to any other vertices of G. In this 

paper, I present the eccentric connectivity polynomial of wheel 

related graphs namely closed helm, double wheel, flower 

graph, sunflower graph and a graph by sharing one vertex of 

wheel Wn with the path of length n. 
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1. INTRODUCTION  

Throughout this paper all graphs are assumed to be simple, finite and connected. For 

basic graph theoretical terminology I refer [4]. For a simple connected graph G = (V(G), 

E(G)), with n vertices and m edges, the distance between the vertices vi and vj of V(G), is 
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equal to the length that is the number of edges of the shortest path connecting vi and vj. 

Also for a given vertex vi of  V(G) its eccentricity )( iG v  is the largest distance from vi to 

any other vertices of G. The eccentric connectivity polynomial [2] of G is defined as 

EC(G,x) = .).(
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
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I refer the reader to [1],[3],[5] for explicit formulas for the 

eccentric connectivity polynomial of various families of graphs. The maximum and 

minimum eccentricity of all the vertices of G is called the diameter and radius of G, and is 

denoted by D(G) and r(G) respectively. The average eccentricity of a graph G is denoted 

by ece(G) and is defined as 



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).(
1

)(  A wheel graph Wn is a graph obtained by 

joining all vertices of a cycle Cn to an external vertex. This external vertex may be called 

the central vertex of Wn and the cycle Cn may be called the rim of Wn. That is Wn = Cn + 

K1.  A double wheel graph DWn is a graph defined by 2Cn + K1. That is, a double wheel 

graph is a graph obtained by joining all vertices of the two disjoint cycles to an external 

vertex. A helm graph Hn is a graph obtained by attaching a pendant edge to every vertex of 

the rim Cn of a wheel graph Wn. A closed helm graph CHn is a graph obtained from the 

helm graph Hn, by joining a pendant vertex vi to the pendant vertex vi+1, where 1 ≤ i ≤ n 

and vn+i = vi . That is, the pendant vertices in Hn induce a cycle in CHn. A flower graph Fln 

is a graph which is obtained by joining the pendant vertices of a helm graph Hn to its 

central vertex. A sunflower graph SFn is a graph obtained by replacing each edge of the 

rim of a wheel graph Wn by a triangle such that two triangles share a common vertex if and 

only if the corresponding edges in Wn are adjacent in Wn.  

 

2. MAIN RESULTS 

In this paper, I discuss the eccentric connectivity polynomial of wheel related graph 

families. 

Theorem 2.1. The eccentric connectivity polynomial of closed helm graph CHn is 

EC(CHn, x) = 7nx
3
 + nx

2
 for n ≥ 4. 

Proof. The graph CHn has 2n + 1 vertices and 4n edges with average eccentricity ece(CHn) 

= .
12

26





n

n
 Here D(G) = 3 and r(G) = 2. In the closed helm graph CHn, n vertices has 

eccentricity 3 with degree 4, n vertices has eccentricity 3 with degree 3, 1 vertex has 

eccentricity 2 with degree n. Hence the eccentric connectivity polynomial of CHn is 

EC(CHn, x) = 7nx
3
 + nx

2
 . This is true for all n ≥ 4. 
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Ill ustration 2.2. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1 

Theorem 2.3. The eccentric connectivity polynomial of double wheel graph DWn with 

D(G) = 2 and      r(G) = 1 is EC(DWn, x) = 6nx
2
 + 2nx for n ≥ 3. 

Proof. The graph DWn has 2n + 1 vertices and 4n edges with ece(DWn) = .
12

14





n

n
 In DWn, 

2n vertices has eccentricity 2 with degree 3, 1 vertex has eccentricity 1 with degree 2n. 

Hence the eccentric connectivity polynomial of DWn is EC(DWn, x) = 6nx
2
 + 2nx. This is 

true for all n ≥ 3. 

Illustration 2.4. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2 
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Theorem 2.5. The eccentric connectivity polynomial of flower graph Fln is EC(Fln, x) = 

8nx
2
 + 2nx           for n ≥ 3. 

Proof. The graph Fln has 2n + 1 vertices and 4n edges with ece(Fln) = .
12

14





n

n
 Here D(G) = 

2 and r(G) = 1. In Fln, 2n vertices has eccentricity 2 with degree 4, 1 vertex has eccentricity 

1 with degree 2n. Hence the eccentric connectivity polynomial of Fln is EC(Fln, x) = 8nx
2
 + 

2nx. This is true for all n ≥ 3. 

Illustration 2.6. 

 

 

 

 

 

 

 

 

 

Figure 2.3 

Theorem 2.7. The eccentric connectivity polynomial of  sunflower graph SFn  with D(G) 

=4 and r(G) = 2 is EC(SFn, x) = nx
2
 + 5nx

3
 + 2nx

4
 for n ≥ 6. 

Proof. The graph SFn has 2n + 1 vertices and  4n edges with ece(SFn) = .
12

27





n

n
 In SFn, n 

vertices has eccentricity 3 with degree 5, n vertices has eccentricity 4 with degree 2 and 1 

vertex has eccentricity 2 with degree n. Hence the eccentric connectivity polynomial of SFn 

is EC(SFn, x) = nx
2
 + 5nx

3
 + 2nx

4
 . This is true for all n ≥ 6. 

Illustration 2.8. 
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Figure 2.4 

Theorem 2.9. The eccentric connectivity polynomial of a graph obtained by sharing one 

vertex of wheel Wn with the path of  length n with diameter D(G) = n and radius r(G) = n 
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Proof. The graph WPn has 2n vertices and 3(n – 1) + 2 edges. For odd n ≥ 7, n vertices has 

eccentricity n with degree 3 and 1 vertex has eccentricity n with degree 1 and thus we 

obtained (3n + 1)x
n
. Also 1 vertex has eccentricity n – 1 with degree n + 1, further one 

vertex has eccentricity (n – 1) with degree 2. Hence we obtained (n + 3)x
n-1

. Likewise, 1 

vertex has eccentricity n – 1 – k with degree 4, for k = 1, 2, 3, …, 







 

2

2n . The proof is 

similar for n is even, n ≥ 6. Hence the eccentric connectivity polynomial of WPn is  
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Illustration 2.10. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5 
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3. CONCLUSION 

Thus in the paper eccentric connectivity polynomial of wheel related graph families 

have been studied. 
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