International Journal of Engineering, Science and Mathematics

Vol. 8 Issue 5, May 2019,

ISSN: 2320-0294 Impact Factor: 6.765

Journal Homepage: http://www.ijesm.co.in, Email: ijesmj@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

ECCENTRIC CONNECTIVITY POLYNOMIAL OF WHEEL RELATED GRAPHS

DR. SOWMYA.S*

ABSTRACT

Let G = (V(G), E(G)) be a graph. The eccentric connectivity polynomial of G is defined as $EC(G,x) = \sum_{i=1}^{n} d_G(v_i) x^{\varepsilon_G(v_i)}$ where

KEYWORDS:

eccentric connectivity polynomial;

closed helm; double wheel;

flower;

sunflower.

the eccentricity $\varepsilon_G(v_i)$ for a given vertex v_i of V(G), is the largest distance from v_i to any other vertices of G. In this paper, I present the eccentric connectivity polynomial of wheel related graphs namely closed helm, double wheel, flower graph, sunflower graph and a graph by sharing one vertex of wheel W_n with the path of length n.

Author correspondence:

Dr. Sowmya.S,

Assistant Professor in Mathematics,

Malankara Catholic College, Mariagiri, Tamil Nadu.

1. INTRODUCTION

Throughout this paper all graphs are assumed to be simple, finite and connected. For basic graph theoretical terminology I refer [4]. For a simple connected graph G = (V(G), E(G)), with n vertices and m edges, the distance between the vertices v_i and v_j of V(G), is

^{*} Assistant Professor in Mathematics, Malankara Catholic College, Mariagiri, Tamil Nadu, India

equal to the length that is the number of edges of the shortest path connecting v_i and v_i. Also for a given vertex v_i of V(G) its eccentricity $\varepsilon_G(v_i)$ is the largest distance from v_i to any other vertices of G. The eccentric connectivity polynomial [2] of G is defined as $EC(G,x) = \sum_{i=1}^{n} d_G(v_i) x^{\varepsilon_G(v_i)}$. I refer the reader to [1],[3],[5] for explicit formulas for the eccentric connectivity polynomial of various families of graphs. The maximum and minimum eccentricity of all the vertices of G is called the diameter and radius of G, and is denoted by D(G) and r(G) respectively. The average eccentricity of a graph G is denoted by ece(G) and is defined as $ece(G) = \frac{1}{n} \sum_{i=1}^{n} \varepsilon_{G}(v_{i})$. A wheel graph W_{n} is a graph obtained by joining all vertices of a cycle C_n to an external vertex. This external vertex may be called the central vertex of W_n and the cycle C_n may be called the rim of W_n . That is $W_n = C_n +$ K₁. A double wheel graph DW_n is a graph defined by 2C_n + K₁. That is, a double wheel graph is a graph obtained by joining all vertices of the two disjoint cycles to an external vertex. A helm graph H_n is a graph obtained by attaching a pendant edge to every vertex of the rim C_n of a wheel graph W_n. A closed helm graph CH_n is a graph obtained from the helm graph H_n , by joining a pendant vertex v_i to the pendant vertex v_{i+1} , where $1 \leq i \leq n$ and $v_{n+i} = v_i$. That is, the pendant vertices in H_n induce a cycle in CH_n . A flower graph Fl_n is a graph which is obtained by joining the pendant vertices of a helm graph H_n to its central vertex. A sunflower graph SFn is a graph obtained by replacing each edge of the rim of a wheel graph W_n by a triangle such that two triangles share a common vertex if and only if the corresponding edges in W_n are adjacent in W_n .

2. MAIN RESULTS

In this paper, I discuss the eccentric connectivity polynomial of wheel related graph families.

Theorem 2.1. The eccentric connectivity polynomial of closed helm graph CH_n is $EC(CH_n, x) = 7nx^3 + nx^2$ for $n \ge 4$.

Proof. The graph CH_n has 2n + 1 vertices and 4n edges with average eccentricity $ece(CH_n) = \frac{6n+2}{2n+1}$. Here D(G) = 3 and r(G) = 2. In the closed helm graph CH_n , n vertices has eccentricity 3 with degree 4, n vertices has eccentricity 3 with degree 3, 1 vertex has eccentricity 2 with degree n. Hence the eccentric connectivity polynomial of CH_n is $EC(CH_n, x) = 7nx^3 + nx^2$. This is true for all $n \ge 4$.

Ill ustration 2.2.

closed helm graph CH₆

Figure 2.1

Theorem 2.3. The eccentric connectivity polynomial of double wheel graph DW_n with D(G) = 2 and r(G) = 1 is $EC(DW_n, x) = 6nx^2 + 2nx$ for $n \ge 3$.

Proof. The graph DW_n has 2n + 1 vertices and 4n edges with $ece(DW_n) = \frac{4n+1}{2n+1}$. In DW_n,

2n vertices has eccentricity 2 with degree 3, 1 vertex has eccentricity 1 with degree 2n. Hence the eccentric connectivity polynomial of DW_n is $EC(DW_n, x) = 6nx^2 + 2nx$. This is true for all $n \ge 3$.

Illustration 2.4.

Figure 2.2

Theorem 2.5. The eccentric connectivity polynomial of flower graph Fl_n is $EC(Fl_n, x) = 8nx^2 + 2nx$ for $n \ge 3$.

Proof. The graph Fl_n has 2n + 1 vertices and 4n edges with $ece(Fl_n) = \frac{4n + 1}{2n + 1}$. Here D(G) = 2 and r(G) = 1. In Fl_n , 2n vertices has eccentricity 2 with degree 4, 1 vertex has eccentricity 1 with degree 2n. Hence the eccentric connectivity polynomial of Fl_n is $EC(Fl_n, x) = 8nx^2 + 2nx$. This is true for all $n \ge 3$.

Illustration 2.6.

flower graph FL₅

Figure 2.3

Theorem 2.7. The eccentric connectivity polynomial of sunflower graph SF_n with D(G) =4 and r(G) = 2 is $EC(SF_n, x) = nx^2 + 5nx^3 + 2nx^4$ for $n \ge 6$.

Proof. The graph SF_n has 2n+1 vertices and 4n edges with $ece(SF_n) = \frac{7n+2}{2n+1}$. In SF_n , n vertices has eccentricity 3 with degree 5, n vertices has eccentricity 4 with degree 2 and 1 vertex has eccentricity 2 with degree n. Hence the eccentric connectivity polynomial of SF_n is $EC(SF_n, x) = nx^2 + 5nx^3 + 2nx^4$. This is true for all $n \ge 6$.

Illustration 2.8.

sunflower graph SF₆

Figure 2.4

Theorem 2.9. The eccentric connectivity polynomial of a graph obtained by sharing one vertex of wheel W_n with the path of length n with diameter D(G) = n and radius r(G) = n

$$-1 - \left\lfloor \frac{n-2}{2} \right\rfloor$$
, $ece(WP_n) = 4 \left\lfloor n+1 + \left\lfloor \frac{n-2}{2} \right\rfloor \right\rfloor$ for odd n and $4 \left\lfloor n+1 + \left\lfloor \frac{n-3}{2} \right\rfloor \right\rfloor$ for even n, is given by

$$EC(WP_n, x) = \begin{cases} (3n+1)x^n + (n+3)x^{n-1} + \sum_{k=1}^{\lfloor \frac{n-2}{2} \rfloor} 4x^{n-1-k} & \text{if } n = 7,9,... \\ (3n+1)x^n + (n+3)x^{n-1} + \sum_{k=1}^{\lfloor \frac{n-1}{2} \rfloor} 4x^{n-1-k} + 2x^{\lfloor \frac{n}{2} \rfloor} & \text{if } n = 6,8,10,... \end{cases}$$

Proof. The graph WP_n has 2n vertices and 3(n-1)+2 edges. For odd $n \ge 7$, n vertices has eccentricity n with degree 3 and 1 vertex has eccentricity n with degree 1 and thus we obtained $(3n+1)x^n$. Also 1 vertex has eccentricity n-1 with degree n+1, further one vertex has eccentricity (n-1) with degree 2. Hence we obtained $(n+3)x^{n-1}$. Likewise, 1 vertex has eccentricity n-1-k with degree 4, for $k=1,2,3,...,\lfloor \frac{n-2}{2} \rfloor$. The proof is

similar for n is even, $n \ge 6$. Hence the eccentric connectivity polynomial of WP_n is

$$EC(WP_n, x) = \begin{cases} (3n+1)x^n + (n+3)x^{n-1} + \sum_{k=1}^{\left\lfloor \frac{n-2}{2} \right\rfloor} 4x^{n-1-k} & \text{if } n = 7,9,... \\ (3n+1)x^n + (n+3)x^{n-1} + \sum_{k=1}^{\left\lfloor \frac{n-1}{2} \right\rfloor} 4x^{n-1-k} + 2x^{\left\lfloor \frac{n}{2} \right\rfloor} & \text{if } n = 6,8,10,... \end{cases}$$

Illustration 2.10.

 W_6 with the path of length 6 attached to one vertex Figure 2.5

3. CONCLUSION

Thus in the paper eccentric connectivity polynomial of wheel related graph families have been studied.

REFERENCES

- [1] Doslic, T., Ghorbani, M., Hosseinzadeh, M.A., "Eccentric Connectivity Polynomial of Some Graph Operations" *Serdica J. Computing*, vol. 5, pp. 101-116, 2011.
- [2] Ghorbani, M and Hemmasi, M., "Eccentric Connectivity Polynomial of C_{12n + 4} Fullerenes" *Digest Journal of Nanomaterials and Biostructures*, vol. 4, pp. 545-547, 2009.
- [3] Gutman, I., "Distance in Thorny Graph" *Publications del' Institut Mathematique*(Beograd), vol. 63, pp. 31-36, 1998.
- [4] Harary F., "Graph Theory", Narosa Publishing House 1969.
- [5] Nianjan De, "On Eccentric Connectivity Index and Poynomial of Thorn Graph", *Applied Mathematics*, vol 3, pp.

931-934,2012.